Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 283
1.
Mov Disord ; 39(2): 249-258, 2024 Feb.
Article En | MEDLINE | ID: mdl-38014588

Recent studies show that pathogenic variants in DNAJC12, a co-chaperone for monoamine synthesis, may cause mild hyperphenylalaninemia with infantile dystonia, young-onset parkinsonism, developmental delay and cognitive deficits. DNAJC12 has been included in newborn screening, most revealingly in Spain, and those results highlight the importance of genetic diagnosis and early intervention in combating human disease. However, practitioners may be unaware of these advances and it is probable that many patients, especially adults, have yet to receive molecular testing for DNAJC12. Hence, this review summarizes genotype-phenotype relationships and treatment paradigms for patients with pathogenic variants in DNAJC12. It provides an overview of the structure of DNAJC12 protein, known genetic variants, domains, and binding partners, and elaborates on its role in monoamine synthesis, disease etiology, and pathogenesis. © 2023 International Parkinson and Movement Disorder Society.


Movement Disorders , Parkinsonian Disorders , Phenylketonurias , Adult , Humans , Infant, Newborn , Amines , Movement Disorders/genetics , Parkinsonian Disorders/genetics , Phenylketonurias/genetics , Phenylketonurias/pathology , Repressor Proteins/genetics
2.
Hepatology ; 79(5): 1088-1097, 2024 May 01.
Article En | MEDLINE | ID: mdl-37824086

BACKGROUND AND AIMS: Hepatocyte transplantation for genetic liver diseases has several potential advantages over gene therapy. However, the low efficiency of cell engraftment has limited its clinical implementation. This problem could be overcome by selectively expanding transplanted donor cells until they replace enough of the liver mass to achieve therapeutic benefit. We previously described a gene therapy method to selectively expand hepatocytes deficient in cytochrome p450 reductase (Cypor) using acetaminophen (APAP). Because Cypor is required for the transformation of APAP to a hepatotoxic metabolite, Cypor-deficient cells are protected from toxicity and are able to expand following APAP-induced liver injury. Here, we apply this selection system to correct a mouse model of phenylketonuria by cell transplantation. APPROACH AND RESULTS: Hepatocytes from a wild-type donor animal were edited in vitro to create Cypor deficiency and then transplanted into phenylketonuric animals. Following selection with APAP, blood phenylalanine concentrations were fully normalized and remained stable following APAP withdrawal. Cypor-deficient hepatocytes expanded from < 1% to ~14% in corrected animals, and they showed no abnormalities in blood chemistries, liver histology, or drug metabolism. CONCLUSIONS: We conclude that APAP-mediated selection of transplanted hepatocytes is a potential therapeutic for phenylketonuria with long-term efficacy and a favorable safety profile.


Chemical and Drug Induced Liver Injury , Phenylketonurias , Mice , Animals , Acetaminophen , Hepatocytes/metabolism , Liver/pathology , Phenylketonurias/metabolism , Phenylketonurias/pathology , Disease Models, Animal , Chemical and Drug Induced Liver Injury/pathology , Mice, Inbred C57BL
3.
Sci Rep ; 11(1): 22886, 2021 11 24.
Article En | MEDLINE | ID: mdl-34819582

Phenylketonuria (PKU) is a genetic deficiency of phenylalanine hydroxylase (PAH) in liver resulting in blood phenylalanine (Phe) elevation and neurotoxicity. A pegylated phenylalanine ammonia lyase (PEG-PAL) metabolizing Phe into cinnamic acid was recently approved as treatment for PKU patients. A potentially one-time rAAV-based delivery of PAH gene into liver to convert Phe into tyrosine (Tyr), a normal way of Phe metabolism, has now also entered the clinic. To understand differences between these two Phe lowering strategies, we evaluated PAH and PAL expression in livers of PAHenu2 mice on brain and liver functions. Both lowered brain Phe and increased neurotransmitter levels and corrected animal behavior. However, PAL delivery required dose optimization, did not elevate brain Tyr levels and resulted in an immune response. The effect of hyperphenylalanemia on liver functions in PKU mice was assessed by transcriptome and proteomic analyses. We observed an elevation in Cyp4a10/14 proteins involved in lipid metabolism and upregulation of genes involved in cholesterol biosynthesis. Majority of the gene expression changes were corrected by PAH and PAL delivery though the role of these changes in PKU pathology is currently unclear. Taken together, here we show that blood Phe lowering strategy using PAH or PAL corrects both brain pathology as well as previously unknown lipid metabolism associated pathway changes in liver.


Genetic Therapy , Liver/enzymology , Phenylalanine Ammonia-Lyase/metabolism , Phenylalanine Hydroxylase/metabolism , Phenylalanine/blood , Phenylketonurias/therapy , Transcriptome , Animals , Biomarkers/blood , Brain/metabolism , Brain/pathology , Disease Models, Animal , Down-Regulation , Gene Expression Profiling , Male , Mice, Knockout , Phenylalanine Ammonia-Lyase/genetics , Phenylalanine Hydroxylase/genetics , Phenylketonurias/blood , Phenylketonurias/genetics , Phenylketonurias/pathology , Proteome , Proteomics
4.
J Pediatr Endocrinol Metab ; 34(9): 1157-1167, 2021 Sep 27.
Article En | MEDLINE | ID: mdl-34214291

OBJECTIVES: This study aimed to evaluate the biochemical factors, genetic mutations, outcome of treatment, and clinical follow-up data of Iranian patients with tetrahydrobiopterin (BH4) deficiency from April/2016 to March/2020. METHODS: Forty-seven BH4 deficiency patients were included in the study and underwent biochemical and genetic analyses. The clinical outcomes of the patients were evaluated after long-term treatment. RESULTS: Out of the 47 (25 females and 22 males) BH4 deficiency patients enrolled in the study, 23 were Dihydropteridine reductase (DHPR) deficient patients, 23 were 6-pyruvoyl-tetrahydropterin synthase (PTPS) deficient patients, and one was GTP-Cyclohydrolase 1 deficiency (GTPCH-1) patient. No clinical symptoms were observed in 10 of the DHPR deficient patients (before and after the treatment). Also, most patients diagnosed at an early age had a proper response to the treatment. However, drug therapy did not improve clinical symptoms in three of the patients diagnosed at the age of over 10 years. Also, 16 PTPS deficiency patients who were detected within 6 months and received treatment no clinical symptoms were presented. One of the patients was detected with GTPCH deficiency. Despite being treated with BH4, this patient suffered from a seizure, movement disorder, mental retardation, speech difficulty, and hypotonia. CONCLUSIONS: The study results showed that neonatal screening should be carried out in all patients with hyperphenylalaninemia because early diagnosis and treatment can reduce symptoms and prevent neurological impairments. Although the BH4 deficiency outcomes are highly variable, early diagnosis and treatment in the first months of life are crucial for good outcomes.


Biopterins/analogs & derivatives , Phenylketonurias/drug therapy , Adolescent , Biopterins/therapeutic use , Child , Child, Preschool , Female , Follow-Up Studies , Humans , Infant , Infant, Newborn , Iran , Male , Phenylketonurias/pathology , Prognosis
5.
Am J Med Genet A ; 185(11): 3350-3358, 2021 11.
Article En | MEDLINE | ID: mdl-34165242

From Sir Archibald Garrod's initial description of the tetrad of albinism, alkaptonuria, cystinuria, and pentosuria to today, the field of medicine dedicated to inborn errors of metabolism has evolved from disease identification and mechanistic discovery to the development of therapies designed to subvert biochemical defects. In this review, we highlight major milestones in the treatment and diagnosis of inborn errors of metabolism, starting with dietary therapy for phenylketonuria in the 1950s and 1960s, and ending with current approaches in genetic manipulation.


Albinism/therapy , Alkaptonuria/therapy , Cystinuria/therapy , Metabolism, Inborn Errors/therapy , Albinism/genetics , Albinism/metabolism , Albinism/pathology , Alkaptonuria/genetics , Alkaptonuria/metabolism , Alkaptonuria/pathology , Carbohydrate Metabolism, Inborn Errors/genetics , Carbohydrate Metabolism, Inborn Errors/metabolism , Carbohydrate Metabolism, Inborn Errors/pathology , Carbohydrate Metabolism, Inborn Errors/therapy , Cystinuria/genetics , Cystinuria/metabolism , Cystinuria/pathology , Humans , Metabolism, Inborn Errors/genetics , Metabolism, Inborn Errors/metabolism , Metabolism, Inborn Errors/pathology , Phenylketonurias/genetics , Phenylketonurias/metabolism , Phenylketonurias/pathology , Phenylketonurias/therapy , Sugar Alcohol Dehydrogenases/deficiency , Sugar Alcohol Dehydrogenases/genetics , Sugar Alcohol Dehydrogenases/metabolism , Xylulose/genetics , Xylulose/metabolism
6.
Mol Genet Metab ; 133(2): 123-136, 2021 06.
Article En | MEDLINE | ID: mdl-33903016

Tetrahydrobiopterin (BH4) deficiency is caused by genetic variants in the three genes involved in de novo cofactor biosynthesis, GTP cyclohydrolase I (GTPCH/GCH1), 6-pyruvoyl-tetrahydropterin synthase (PTPS/PTS), sepiapterin reductase (SR/SPR), and the two genes involved in cofactor recycling, carbinolamine-4α-dehydratase (PCD/PCBD1) and dihydropteridine reductase (DHPR/QDPR). Dysfunction in BH4 metabolism leads to reduced cofactor levels and may result in systemic hyperphenylalaninemia and/or neurological sequelae due to secondary deficiency in monoamine neurotransmitters in the central nervous system. More than 1100 patients with BH4 deficiency and 800 different allelic variants distributed throughout the individual genes are tabulated in database of pediatric neurotransmitter disorders PNDdb. Here we provide an update on the molecular-genetic analysis and structural considerations of these variants, including the clinical courses of the genotypes. From a total of 324 alleles, 11 are associated with the autosomal recessive form of GTPCH deficiency presenting with hyperphenylalaninemia (HPA) and neurotransmitter deficiency, 295 GCH1 variant alleles are detected in the dominant form of L-dopa-responsive dystonia (DRD or Segawa disease) while phenotypes of 18 alleles remained undefined. Autosomal recessive variants observed in the PTS (199 variants), PCBD1 (32 variants), and QDPR (141 variants) genes lead to HPA concomitant with central monoamine neurotransmitter deficiency, while SPR deficiency (104 variants) presents without hyperphenylalaninemia. The clinical impact of reported variants is essential for genetic counseling and important for development of precision medicine.


Alcohol Oxidoreductases/genetics , GTP Cyclohydrolase/genetics , Phenylketonurias/genetics , Phosphorus-Oxygen Lyases/genetics , Biopterins/analogs & derivatives , Biopterins/genetics , Biopterins/metabolism , Dihydropteridine Reductase/genetics , Dystonia/genetics , Dystonia/metabolism , Dystonia/pathology , Genetic Predisposition to Disease , Humans , Metabolism, Inborn Errors/genetics , Metabolism, Inborn Errors/metabolism , Metabolism, Inborn Errors/pathology , Microtubule-Associated Proteins/genetics , Phenylketonurias/classification , Phenylketonurias/metabolism , Phenylketonurias/pathology , Psychomotor Disorders/genetics , Psychomotor Disorders/metabolism , Psychomotor Disorders/pathology
7.
PLoS One ; 16(4): e0249608, 2021.
Article En | MEDLINE | ID: mdl-33822819

A timely detection of patients with tetrahydrobiopterin (BH4) -deficient types of hyperphenylalaninemia (HPABH4) is important for assignment of correct therapy, allowing to avoid complications. Often HPABH4 patients receive the same therapy as phenylalanine hydroxylase (PAH) -deficiency (phenylketonuria) patients-dietary treatment-and do not receive substitutive BH4 therapy until the diagnosis is confirmed by molecular genetic means. In this study, we present a cohort of 30 Russian patients with HPABH4 with detected variants in genes causing different types of HPA. Family diagnostics and biochemical urinary pterin spectrum analyses were carried out. HPABH4A is shown to be the prevalent type, 83.3% of all HPABH4 cases. The mutation spectrum for the PTS gene was defined, the most common variants in Russia were p.Thr106Met-32%, p.Asn72Lys-20%, p.Arg9His-8%, p.Ser32Gly-6%. We also detected 7 novel PTS variants and 3 novel QDPR variants. HPABH4 prevalence was estimated to be 0.5-0.9% of all HPA cases in Russia, which is significantly lower than in European countries on average, China, and Saudi Arabia. The results of this research show the necessity of introducing differential diagnostics for HPABH4 into neonatal screening practice.


Mutation , Phenylalanine Hydroxylase/deficiency , Phenylketonurias/epidemiology , Phosphorus-Oxygen Lyases/deficiency , Case-Control Studies , Humans , Phenylketonurias/genetics , Phenylketonurias/pathology , Phosphorus-Oxygen Lyases/genetics , Prognosis , Retrospective Studies , Russia/epidemiology
8.
Am J Med Genet A ; 185(7): 1991-2002, 2021 07.
Article En | MEDLINE | ID: mdl-33765361

Neurotoxic effects caused by high phenylalanine (Phe) in patients with phenylketonuria (PKU) can be avoided through dietary treatment. However, achieving the recommended Phe levels has been a challenge. This study aimed to investigate factors associated with adherence to PKU treatment among patients followed at a medical genetics public service in southern Brazil. Twenty-nine patients (early diagnosed, n = 20; late-diagnosed, n = 9) with classical (n = 16) or mild PKU (n = 13) aged 6-34 years (16.4 ± 7.5) and 16 caregivers were included. Blood Phe levels were recorded, and assessment tools measuring barriers to treatment, IQ, knowledge about disease, treatment, and perceived adherence were collected. Classical PKU patients showed higher current blood Phe levels than mild PKU patients (U = 37.000, p = 0.003). Lifetime and childhood Phe levels were associated with recent metabolic control (τ = 0.76, p = 0.000; τ = 0.70, p = 0.000, respectively). The perception of barriers to treatment was associated with a higher blood Phe level (τ = 0.39, p = 0.003). Tolerance to Phe, metabolic control throughout childhood, and perceived difficulty in living with demands of treatment are important factors of greater vulnerability to poor adherence in PKU patients.


Diet , Phenylalanine/blood , Phenylketonurias/diet therapy , Phenylketonurias/genetics , Adolescent , Brazil/epidemiology , Child , Female , Humans , Male , Phenylalanine/adverse effects , Phenylketonurias/blood , Phenylketonurias/pathology , Young Adult
9.
Mol Genet Metab ; 133(1): 49-55, 2021 05.
Article En | MEDLINE | ID: mdl-33766497

BACKGROUND: In patients with phenylketonuria, stability of blood phenylalanine and tyrosine concentrations might influence brain chemistry and therefore patient outcome. This study prospectively investigated the effects of tetrahydrobiopterin (BH4), as a chaperone of phenylalanine hydroxylase on diurnal and day-to-day variations of blood phenylalanine and tyrosine concentrations. METHODS: Blood phenylalanine and tyrosine were measured in dried blood spots (DBS) four times daily for 2 days (fasting, before lunch, before dinner, evening) and once daily (fasting) for 6 days in a randomized cross-over design with a period with BH4 and a period without BH4. The sequence was randomized. Eleven proven BH4 responsive PKU patients participated, 5 of them used protein substitutes during BH4 treatment. Natural protein intake and protein substitute dosing was adjusted during the period without BH4 in order to keep DBS phenylalanine levels within target range. Patients filled out a 3-day food diary during both study periods. Variations of DBS phenylalanine and Tyr were expressed in standard deviations (SD) and coefficient of variation (CV). RESULTS: BH4 treatment did not significantly influence day-to-day phenylalanine and tyrosine variations nor diurnal phenylalanine variations, but decreased diurnal tyrosine variations (median SD 17.6 µmol/l, median CV 21.3%, p = 0.01) compared to diet only (median SD 34.2 µmol/l, median CV 43.2%). Consequently, during BH4 treatment diurnal phenylalanine/tyrosine ratio variation was smaller, while fasting tyrosine levels tended to be higher. CONCLUSION: BH4 did not impact phenylalanine variation but decreased diurnal tyrosine and phenylalanine/tyrosine ratio variations, possibly explained by less use of protein substitute and increased tyrosine synthesis.


Biopterins/analogs & derivatives , Phenylalanine Hydroxylase/genetics , Phenylalanine/blood , Phenylketonurias/drug therapy , Tyrosine/blood , Adult , Biopterins/adverse effects , Biopterins/pharmacology , Brain/drug effects , Brain/metabolism , Brain/pathology , Child , Child, Preschool , Dried Blood Spot Testing , Female , Humans , Male , Phenylalanine Hydroxylase/antagonists & inhibitors , Phenylketonurias/genetics , Phenylketonurias/pathology
10.
Mol Neurobiol ; 58(6): 2897-2909, 2021 Jun.
Article En | MEDLINE | ID: mdl-33550493

Phenylketonuria (PKU) is an inborn error of metabolism caused by phenylalanine hydroxylase (PAH) deficiency and characterized by elevated plasma levels of phenylalanine (hyperphenylalaninemia-HPA). In severe cases, PKU patients present with neurological dysfunction and hepatic damage, but the underlying mechanisms are not fully elucidated. Other forms of HPA also characterized by neurological symptoms occur in rare instances due to defects in the metabolism of the PAH cofactor tetrahydrobiopterin. This review aims to gather the knowledge acquired on the phenylalanine-induced toxicity focusing on findings obtained from pre-clinical studies. Mounting evidence obtained from PKU genetic mice, rats submitted to different HPA models, and cell cultures exposed to phenylalanine has shown that high levels of this amino acid impair mitochondrial bioenergetics, provoke changes in oxidative and inflammatory status, and induce apoptosis. Noteworthy, some data demonstrated that phenylalanine-induced oxidative stress occurs specifically in mitochondria. Further studies have shown that the metabolites derived from phenylalanine, namely phenylpyruvate, phenyllactate, and phenylacetate, also disturb oxidative status. Therefore, it may be presumed that mitochondrial damage is one of the most important mechanisms responsible for phenylalanine toxicity. It is expected that the findings reviewed here may contribute to the understanding of PKU and HPA pathophysiology and to the development of novel therapeutic strategies for these disorders.


Inflammation/pathology , Mitochondria/pathology , Oxidative Stress , Phenylketonurias/pathology , Phenylketonurias/physiopathology , Animals , Disease Models, Animal , Inflammation/complications , Oxidation-Reduction , Phenylketonurias/complications
11.
Mol Genet Metab ; 132(3): 173-179, 2021 03.
Article En | MEDLINE | ID: mdl-33602601

Osteopenia occurs in a subset of phenylalanine hydroxylase (PAH) deficient phenylketonuria (PKU) patients. While osteopenia is not fully penetrant in patients, the Pahenu2 classical PKU mouse is universally osteopenic, making it an ideal model of the phenotype. Pahenu2 Phe management, with a Phe-fee amino acid defined diet, does not improve bone density as histomorphometry metrics remain indistinguishable from untreated animals. Previously, we demonstrated Pahenu2 mesenchymal stem cells (MSCs) display impaired osteoblast differentiation. Oxidative stress is recognized in PKU patients and PKU animal models. Pahenu2 MSCs experience oxidative stress determined by intracellular superoxide over-representation. The deleterious impact of oxidative stress on mitochondria is recognized. Oximetry applied to Pahenu2 MSCs identified mitochondrial stress by increased basal respiration with concurrently reduced maximal respiration and respiratory reserve. Proton leak secondary to mitochondrial complex 1 dysfunction is a recognized superoxide source. Respirometry applied to Pahenu2 MSCs, in the course of osteoblast differentiation, identified a partial complex 1 deficit. Pahenu2 MSCs treated with the antioxidant resveratrol demonstrated increased mitochondrial mass by MitoTracker green labeling. In hyperphenylalaninemic conditions, resveratrol increased in situ alkaline phosphatase activity suggesting partial recovery of Pahenu2 MSCs osteoblast differentiation. Up-regulation of oxidative energy production is required for osteoblasts differentiation. Our data suggests impaired Pahenu2 MSC developmental competence involves an energy deficit. We posit energy support and oxidative stress reduction will enable Pahenu2 MSC differentiation in the osteoblast lineage to subsequently increase bone density.


Bone Diseases, Metabolic/genetics , Oxidative Stress/genetics , Phenylalanine Hydroxylase/genetics , Phenylketonurias/genetics , Alkaline Phosphatase/genetics , Animals , Bone Density/genetics , Bone Diseases, Metabolic/complications , Bone Diseases, Metabolic/drug therapy , Bone Diseases, Metabolic/pathology , Cell Differentiation/drug effects , Disease Models, Animal , Humans , Mesenchymal Stem Cells/drug effects , Mice , Osteoblasts/drug effects , Osteoblasts/metabolism , Phenylalanine/genetics , Phenylketonurias/complications , Phenylketonurias/drug therapy , Phenylketonurias/pathology , Resveratrol/pharmacology
12.
Mol Genet Metab ; 132(4): 215-219, 2021 04.
Article En | MEDLINE | ID: mdl-33610470

BACKGROUND: A subset of patients with phenylketonuria benefit from treatment with tetrahydrobiopterin (BH4), although there is no consensus on the definition of BH4 responsiveness. The aim of this study therefore was to gain insight into the definitions of long-term BH4 responsiveness being used around the world. METHODS: We performed a web-based survey targeting healthcare professionals involved in the treatment of PKU patients. Data were analysed according to geographical region (Europe, USA/Canada, other). RESULTS: We analysed 166 responses. Long-term BH4 responsiveness was commonly defined using natural protein tolerance (95.6%), improvement of metabolic control (73.5%) and increase in quality of life (48.2%). When a specific value for a reduction in phenylalanine concentrations was reported (n = 89), 30% and 20% were most frequently used as cut-off values (76% and 19% of respondents, respectively). When a specific relative increase in natural protein tolerance was used to define long-term BH4 responsiveness (n = 71), respondents most commonly reported cut-off values of 30% and 100% (28% of respondents in both cases). Respondents from USA/Canada (n = 50) generally used less strict cut-off values compared to Europe (n = 96). Furthermore, respondents working within the same center answered differently. CONCLUSION: The results of this study suggest a very heterogeneous situation on the topic of defining long-term BH4 responsiveness, not only at a worldwide level but also within centers. Developing a strong evidence- and consensus-based definition would improve the quality of BH4 treatment.


Biopterins/analogs & derivatives , Phenylalanine/genetics , Phenylketonurias/drug therapy , Biopterins/adverse effects , Biopterins/therapeutic use , Canada/epidemiology , Europe/epidemiology , Humans , Phenylalanine/blood , Phenylalanine Hydroxylase/genetics , Phenylketonurias/blood , Phenylketonurias/epidemiology , Phenylketonurias/pathology , United States/epidemiology
13.
Proteins ; 89(6): 683-696, 2021 06.
Article En | MEDLINE | ID: mdl-33491267

Phenylketonuria (PKU) is a genetic disorder that if left untreated can lead to behavioral problems, epilepsy, and even mental retardation. PKU results from mutations within the phenylalanine-4-hydroxylase (PAH) gene that encodes for the PAH protein. The study of all PAH causing mutations is improbable using experimental techniques. In this study, a collection of in silico resources, sorting intolerant from tolerant, Polyphen-2, PhD-SNP, and MutPred were used to identify possible pathogenetic and deleterious PAH non-synonymous single nucleotide polymorphisms (nsSNPs). We identified two variants of PAH, I65N and L311P, to be the most deleterious and disease causing nsSNPs. Molecular dynamics (MD) simulations were carried out to characterize these point mutations on the atomic level. MD simulations revealed increased flexibility and a decrease in the hydrogen bond network for both mutants compared to the native protein. Free energy calculations using the MM/GBSA approach found that BH4 , a drug-based therapy for PKU patients, had a higher binding affinity for I65N and L311P mutants compared to the wildtype protein. We also identify important residues in the BH4 binding pocket that may be of interest for the rational drug design of other PAH drug-based therapies. Lastly, free energy calculations also determined that the I65N mutation may impair the dimerization of the N-terminal regulatory domain of PAH.


Coenzymes/chemistry , Phenylalanine Hydroxylase/chemistry , Phenylketonurias/genetics , Point Mutation , Polymorphism, Single Nucleotide , Binding Sites , Biopterins/analogs & derivatives , Coenzymes/metabolism , Drug Design , Gene Expression , Humans , Hydrogen Bonding , Kinetics , Molecular Dynamics Simulation , Phenylalanine Hydroxylase/genetics , Phenylalanine Hydroxylase/metabolism , Phenylketonurias/drug therapy , Phenylketonurias/metabolism , Phenylketonurias/pathology , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Protein Multimerization , Substrate Specificity , Thermodynamics
14.
J Neurosci Res ; 99(1): 349-360, 2021 01.
Article En | MEDLINE | ID: mdl-32141105

White matter pathologies, as well as intellectual disability, microcephaly, and other central nervous system injuries, are clinical traits commonly ascribed to classic phenylketonuria (PKU). PKU is an inherited metabolic disease elicited by the deficiency of phenylalanine hydroxylase. Accumulation of l-phenylalanine (Phe) and its metabolites is found in tissues and body fluids in phenylketonuric patients. In order to mitigate the clinical findings, rigorous dietary Phe restriction constitutes the core of therapeutic management in PKU. Myelination is the process whereby the oligodendrocytes wrap myelin sheaths around the axons, supporting the conduction of action potentials. White matter injuries are implicated in the brain damage related to PKU, especially in untreated or poorly treated patients. The present review summarizes evidence toward putative mechanisms driving the white matter pathology in PKU patients.


Brain/pathology , Phenylketonurias/pathology , White Matter/pathology , Brain/metabolism , Humans , Phenylketonurias/metabolism , White Matter/metabolism
15.
Mol Genet Metab ; 132(1): 11-18, 2021 01.
Article En | MEDLINE | ID: mdl-33334682

Even with early and continuous treatment, individuals with phenylketonuria (PKU) may exhibit abnormalities of cortical white matter (WM). The present study utilizes a new analysis approach called Automated Fiber-Tract Quantification (AFQ) to advance our understanding of the tract-specific patterns of change in WM abnormalities in individuals with early-treated PKU (ETPKU). Diffusion Tensor Imaging (DTI) data from a sample of 22 individuals with ETPKU and a demographically-matched sample of 21 healthy individuals without PKU was analyzed using AFQ. In addition, a subsample of 8 individuals with ETPKU was reevaluated six months later after demonstrating a significant reduction in blood phe levels following initiation of sapropterin treatment. Within-tract AFQ analyses revealed significant location-by-group interactions for several WM tracts throughout the brain. In most cases, ETPKU-related disruptions in mean diffusivity (MD) were more apparent in posterior (as compared to anterior) aspects of a given tract. Reduction in blood phe levels with the aforementioned ETPKU subsample was associated with a similar pattern of improvement (posterior-to-anterior) within most tracts. Taken together, these findings suggest that there is a systematic pattern of change in WM abnormalities in individuals with ETPKU in a posterior-to-anterior manner along individual WM tracts.


Brain/metabolism , Leukoencephalopathies/diagnosis , Phenylketonurias/diagnosis , White Matter/metabolism , Adolescent , Adult , Brain/diagnostic imaging , Brain/pathology , Child , Cognition/physiology , Diffusion Tensor Imaging , Female , Humans , Leukoencephalopathies/diagnostic imaging , Leukoencephalopathies/metabolism , Male , Phenylketonurias/diagnostic imaging , Phenylketonurias/metabolism , Phenylketonurias/pathology , White Matter/abnormalities , White Matter/diagnostic imaging , White Matter/pathology , Young Adult
16.
Mol Genet Metab ; 131(4): 380-389, 2020 12.
Article En | MEDLINE | ID: mdl-33234470

BACKGROUND: Pyruvoyl Tetrahydropterin Synthase (PTPS) Deficiency is the most common form of BH4 deficiency resulting in hyperphenylalaninemia. It can have variable clinical severity and there is limited information on the clinical presentation, natural history and effectiveness of newborn screening for this condition. METHODS: Retrospective data (growth and clinical parameters, biochemical and genetic testing results, treatment) were collected from 19 patients with PTPS deficiency in different centers, to evaluate biochemical and clinical outcomes. Descriptive statistics was used for qualitative variables, while linear regression analysis was used to correlate quantitative variables. RESULTS: Patients with PTPS deficiency had an increased incidence of prematurity (4/18) with an average gestational age only mildly reduced (37.8 ± 2.4 weeks) and low birth weight (-1.14 ± 0.97 SD below that predicted for gestational age). With time, weight and height approached normal. VALUES: All patients were identified by newborn screening for an elevated phenylalanine level. However, phenylalanine levels were normal in two whose testing was performed at or before 24 h of age. Sapropterin dihydrochloride treatment normalized phenylalanine levels. Molecular testing identified novel variants in the PTS gene, some of which present in more than one affected family. The neurotransmitter derivatives 5-hydroxyindoleacetic acid (5HIAA) and homovanillic acid (HVA) in the CSF were decreased in most cases except in 2 families with the peripheral form of PTPS deficiency. With time, HVA and 5HIAA became abnormally low in two of these patients requiring therapy. Prolactin (whose secretion is inhibited by dopamine) levels were elevated in several patients with PTPS deficiency and inversely correlated with the z-scores for height (p < 0.01) and weight (p < 0.05). Most patients with PTPS deficiency had delayed development early in life, improving around school age with IQs mostly in the normal range, with a small decline in older individuals. From a neurological standpoint, most patients had normal brain MRI and minor EEG anomalies, although some had persistent neurological symptoms. DISCUSSION: Patients with PTPS deficiency have not only an increased incidence of prematurity, but also decreased birth weight when corrected for gestational age. Hyperphenylalaninemia can be absent in the first day of life. Therapy with sapropterin dihydrochloride normalizes phenylalanine levels and neurotransmitter precursors can improve CSF neurotransmitter metabolites levels. Insufficient dopaminergic stimulation (as seen from elevated prolactin) might result in decreased height in patients with PTPS deficiency. Despite early delays in development, many patients can achieve independence in adult life, with usually normal neuroimaging and EEG.


Phenylketonurias/genetics , Phosphorus-Oxygen Lyases/deficiency , Prolactin/genetics , Adolescent , Adult , Biopterins/blood , Biopterins/cerebrospinal fluid , Child , Child, Preschool , Female , Homovanillic Acid/cerebrospinal fluid , Humans , Indoles/cerebrospinal fluid , Infant , Infant, Newborn , Magnetic Resonance Imaging , Male , Neonatal Screening , Phenylalanine/cerebrospinal fluid , Phenylketonurias/blood , Phenylketonurias/cerebrospinal fluid , Phenylketonurias/diagnostic imaging , Phenylketonurias/pathology , Phosphorus-Oxygen Lyases/cerebrospinal fluid , Phosphorus-Oxygen Lyases/genetics , Prolactin/cerebrospinal fluid , Prolactin/metabolism
17.
JCI Insight ; 5(20)2020 10 15.
Article En | MEDLINE | ID: mdl-33055427

Phenylalanine hydroxylase-deficient (PAH-deficient) phenylketonuria (PKU) results in systemic hyperphenylalaninemia, leading to neurotoxicity with severe developmental disabilities. Dietary phenylalanine (Phe) restriction prevents the most deleterious effects of hyperphenylalaninemia, but adherence to diet is poor in adult and adolescent patients, resulting in characteristic neurobehavioral phenotypes. Thus, an urgent need exists for new treatments. Additionally, rodent models of PKU do not adequately reflect neurocognitive phenotypes, and thus there is a need for improved animal models. To this end, we have developed PAH-null pigs. After selection of optimal CRISPR/Cas9 genome-editing reagents by using an in vitro cell model, zygote injection of 2 sgRNAs and Cas9 mRNA demonstrated deletions in preimplantation embryos, with embryo transfer to a surrogate leading to 2 founder animals. One pig was heterozygous for a PAH exon 6 deletion allele, while the other was compound heterozygous for deletions of exon 6 and of exons 6-7. The affected pig exhibited hyperphenylalaninemia (2000-5000 µM) that was treatable by dietary Phe restriction, consistent with classical PKU, along with juvenile growth retardation, hypopigmentation, ventriculomegaly, and decreased brain gray matter volume. In conclusion, we have established a large-animal preclinical model of PKU to investigate pathophysiology and to assess new therapeutic interventions.


Liver/metabolism , Phenylalanine Hydroxylase/genetics , Phenylalanine/genetics , Phenylketonurias/genetics , Adolescent , Adult , Animals , CRISPR-Cas Systems/genetics , Diet , Disease Models, Animal , Gene Editing , Humans , Liver/drug effects , Phenotype , Phenylalanine/metabolism , Phenylalanine/pharmacology , Phenylketonurias/diet therapy , Phenylketonurias/metabolism , Phenylketonurias/pathology , Swine
18.
Mol Genet Metab ; 131(3): 306-315, 2020 11.
Article En | MEDLINE | ID: mdl-33051130

Phenylalanine hydroxylase (PAH) deficiency, colloquially known as phenylketonuria (PKU), is among the most common inborn errors of metabolism and in the past decade has become a target for the development of novel therapeutics such as gene therapy. PAH deficient mouse models have been key to new treatment development, but all prior existing models natively express liver PAH polypeptide as inactive or partially active PAH monomers, which complicates the experimental assessment of protein expression following therapeutic gene, mRNA, protein, or cell transfer. The mutant PAH monomers are able to form hetero-tetramers with and inhibit the overall holoenzyme activity of wild type PAH monomers produced from a therapeutic vector. Preclinical therapeutic studies would benefit from a PKU model that completely lacks both PAH activity and protein expression in liver. In this study, we employed CRISPR/Cas9-mediated gene editing in fertilized mouse embryos to generate a novel mouse model that lacks exon 1 of the Pah gene. Mice that are homozygous for the Pah exon 1 deletion are viable, severely hyperphenylalaninemic, accurately replicate phenotypic features of untreated human classical PKU and lack any detectable liver PAH activity or protein. This model of classical PKU is ideal for further development of gene and cell biologics to treat PKU.


Liver/metabolism , Phenylalanine Hydroxylase/genetics , Phenylalanine/genetics , Phenylketonurias/therapy , Animals , CRISPR-Cas Systems/genetics , Disease Models, Animal , Exons/genetics , Gene Editing , Genetic Vectors/genetics , Genetic Vectors/pharmacology , Humans , Liver/drug effects , Liver/pathology , Mice , Phenylalanine/metabolism , Phenylalanine Hydroxylase/pharmacology , Phenylketonurias/genetics , Phenylketonurias/pathology
19.
Mol Genet Metab ; 131(1-2): 155-162, 2020.
Article En | MEDLINE | ID: mdl-32651154

INTRODUCTION: 6-Pyruvoyl-tetrahydropterin synthase deficiency (PTPSd) is a rare autosomal recessive disorder of synthesis of biogenic amines, which is characterized by variable neurological impairment and hyperphenylalaninemia. We aimed to assess the long-term clinical outcome of this disorder and the factors affecting it. METHODS: At total of 28 PTPSd patients (aged 19.9 ±â€¯10.9 years) underwent clinical (neurological and psychiatric) and neuropsychological assessment (BRIEF, VABS-II, and IQ). Based on CSF homovanillic (HVA) and 5-hydroxyindolacetic acid (5-HIAA) and pterin concentrations at diagnosis, patients were classified as having either a severe [SF; low level of CSF, HVA, and 5-HIAA with altered neopterin/biopterin (Neo/Bio)] or mild form (MF; normal HVA and 5-HIAA with altered Neo/Bio) of PTPSd. RESULTS: Approximately 36% of patients had MF PTPSd. At the last examination, 43% of patients had movement disorders (2 MF, 10 SF), 43% of patients had variable degrees of intellectual disability (SF only), 39% met the criteria for a psychiatric disorder (3 MF, 9 SF). Applying a linear regression model, we found that HVA and phenylalanine levels at birth had a significant influence on IQ, BRIEF, and VABS-II variability. Lastly, 5-HIAA further contributed to VABS-II variability. The disease showed a self-limiting clinical course and its treatment, although delayed, is effective in improving the neurological status. CONCLUSIONS: Neurodevelopmental impairment due to PTPSd shows a self-limiting course. A continuous improvement in the neurological condition has been observed in patients receiving treatment, even when delayed. The severity of brain biogenic amine depletion at diagnosis predicts neurological and psychiatric outcomes.


Intellectual Disability/genetics , Nervous System Diseases/genetics , Phenylketonurias/genetics , Phosphorus-Oxygen Lyases/deficiency , Adolescent , Adult , Child , Child, Preschool , Female , Homovanillic Acid/cerebrospinal fluid , Humans , Hydroxyindoleacetic Acid/cerebrospinal fluid , Infant , Infant, Newborn , Intellectual Disability/cerebrospinal fluid , Intellectual Disability/complications , Intellectual Disability/pathology , Male , Nervous System Diseases/cerebrospinal fluid , Nervous System Diseases/complications , Nervous System Diseases/pathology , Phenylketonurias/cerebrospinal fluid , Phenylketonurias/complications , Phenylketonurias/pathology , Phosphorus-Oxygen Lyases/cerebrospinal fluid , Phosphorus-Oxygen Lyases/genetics , Young Adult
20.
Int J Mol Sci ; 21(14)2020 Jul 15.
Article En | MEDLINE | ID: mdl-32679806

A delicate intracellular balance among protein synthesis, folding, and degradation is essential to maintaining protein homeostasis or proteostasis, and it is challenged by genetic and environmental factors. Molecular chaperones and the ubiquitin proteasome system (UPS) play a vital role in proteostasis for normal cellular function. As part of protein quality control, molecular chaperones recognize misfolded proteins and assist in their refolding. Proteins that are beyond repair or refolding undergo degradation, which is largely mediated by the UPS. The importance of protein quality control is becoming ever clearer, but it can also be a disease-causing mechanism. Diseases such as phenylketonuria (PKU) and hereditary tyrosinemia-I (HT1) are caused due to mutations in PAH and FAH gene, resulting in reduced protein stability, misfolding, accelerated degradation, and deficiency in functional proteins. Misfolded or partially unfolded proteins do not necessarily lose their functional activity completely. Thus, partially functional proteins can be rescued from degradation by molecular chaperones and deubiquitinating enzymes (DUBs). Deubiquitination is an important mechanism of the UPS that can reverse the degradation of a substrate protein by covalently removing its attached ubiquitin molecule. In this review, we discuss the importance of molecular chaperones and DUBs in reducing the severity of PKU and HT1 by stabilizing and rescuing mutant proteins.


Phenylketonurias/metabolism , Proteolysis , Tyrosinemias/metabolism , Animals , Deubiquitinating Enzymes/metabolism , Humans , Molecular Chaperones/metabolism , Phenylketonurias/pathology , Proteasome Endopeptidase Complex/metabolism , Protein Folding , Protein Stability , Tyrosinemias/pathology , Ubiquitination
...